Selasa, 03 Januari 2012

Link Penyedia Software Kimia Komputasi


Chimera homepage
Chimera manual
Manual page for "swapna"
Changing face of Medline
Dr.joaguin barroso's blog kimia komputasi
Dr.Barry Honig’s web site (Columbia University great images of biomolecules)
NIH Center for Molecular Modeling
PDB DATEBASE
Searching our WebCite Literature Database
MacMolPlt
Gabedit
Ccp1gui
For using wxmacmolplt with pcgamess/firefly there is a short tutorial
blog David Watson computational chemistry
Try Gabedit
GAMESS website
Chemcraft
Molecular Materials Informatics software kimia komputasi untuk hp (BlackBerry)
UCSF Chimera
Schrödinger Products
LigandScout advanced structure-based pharmacophore modeling
Google Directory Science Chemistry>Software Physicaland Theoretical
Molsoft L.L.C.: Download Molsoft Free Products
Computational Science Software
Open Directory Science Chemistry Software Physical and Theoretical
FSF France Free Software for Chemistry
Linux4Chemistry
Software-Files-l.Cnet.Com
Accelrys 1
Download.Accelrys
Molegro Molecular Viewer Product
worldofteaching Free Chemistry Powerpoint
Guru Kimia: SOFTWARE KIMIA GRATIS
Download & Installation Modeller
Using QM, Spartan Model Calculates Energies
Sains Komputasi Computational Science
Q-Chem
NIC-Serie: Publikationsreihe des John von Neumann-Instituts für Computing
NetSci: MM/MD Modeling Software Lists
List of Software for Quantum Mechanics
Download Chemistry sorted by last update descending Softpedia
QCLDB2
NAMD - Scalable Molecular Dynamics
Hyperchem For Linux
Blog Kimia Komputasi Dosen
Hyperchem
Software2 Kimia Komputasi

Sumber:

Istilah Dalam Kimia Komputasi jilid 2

1. Ab initio: computational chemistry methods based on quantum chemistry
2. Born-Oppenheimer approximation: an assumption that the electronic motion and the nuclear motion in molecules can be separated
3. Cheminformatics: the use of computer and informational techniques, applied to a range of problems in the field of chemistry
4. Comparative molecular field analysis (CoMFA): a 3D QSAR technique based on data from known active molecules
5. Computational chemistry: a branch of chemistry that uses principles of computer science to assist in solving chemical problems
6. Computer science: the study of the theoretical foundations of information and computation. It also includes practical techniques for their implementation and application in computer systems
7. Density functional theory (DFT): quantum mechanical modelling method used in physics and chemistry to investigate the electronic structure of many-body systems
8. Hartree-Fock: an approximate method for the determination of the ground-state wave function and ground-state energy of a quantum many-body system
9. Hybrid functional: a class of approximations to the exchange-correlation energy functional in density functional theory that incorporate a portion of exact exchange from Hartree-Fock theory with exchange and correlation from other sources
10. Linear combination of atomic orbitals (LCAO): a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals
11. Molecular dynamics: a computer simulation of physical movements of atoms and molecules
12. Molecular mechanics: an empirical method used to state potential energy from molecules as a function of geometric variable
13. Molecular modelling: all theoretical methods and computational techniques used to model or mimic the behaviour of molecules
14. Monte Carlo: a class of computational algorithms that rely on repeated random sampling to compute their results
15. Mulliken population analysis: estimating partial atomic charges from calculations carried out by the methods of computational chemistry
16. Quantitative structure-activity relationship (QSAR): the process by which chemical structure is quantitatively correlated with a well defined process, such as chemical reactivity
17. Post-Hartree-Fock: the set of methods developed to improve on the Hartree-Fock, or self-consistent field method
18. Quantum chemistry composite: computational chemistry methods that aim for high accuracy by combining the results of several calculations
19. Slater-type orbitals: functions used as atomic orbitals in the linear combination of atomic orbitals molecular orbital method
20. Statistic mechanics: the mathematical way to extrapolate the thermodinamic character of materials relatively


Sumber:
http://wandasepta.blogspot.com/2011/12/terms-related-to-computational.html

Manfaat Kimia Komputasi untuk Penelitian

  1.  Untuk menemukan titik awal untuk sintesis dalam laboratorium
  2.  Untuk menjelajahi mekanisme reaksi dan menjelaskan penamatan pada reaksi di laboratorium
  3.  Untuk memahami sifat dan perubahan pada sistem makroskopis melalui simulasi yang berlandaskan hukum-hukum interaksi yang ada dalam sistem.  
 
 Sumber:
 http://www.scribd.com/doc/73340630/Manfaat-Kimia-Komputasi-Dalam-Penelitian

Manfaat Kimia Komputasi Dalam Pembelajaran

  •  Dapat menghitung sifat molekul yang kompleks dan hasil perhitungannya berkorelasi secara signifikan dengan eksperimen.
  • Dapat sebagai alat hitung –seperti halnya kalkulator- untuk membantu penyelesaian secara numerik dari persamaan matematika yang menggambarkan sifat sistem, misalnya dalam penyelesaian perhitungan stokiometri, termasuk juga otomatisasi alat ukur yang dapat mengkonversi signal elektronik menjadi data numerik.
  • Dapat sebagai alat visualisasi dan animasi
  • Membantu kita mengeksplorasi sifat senyawa dan pada umumnya program tersebut telah dilengkapi dengan visualisasi dan animasi, seperti program HyperChem, Gaussian, Turbomol, Rasmol dll.
  • Menghitung sifat-sifat molekul dan perubahannya maupun melakukan simulasi terhadap sistem-sistem besar (makromolekul seperti protein atau sistem banyak molekul seperti gas, cairan, padatan, dan Kristal cair), dan menerapkan program tersebut pada sistem kimia nyata.
  • Simulasi terhadap makromolekul (seperti protein dan asam nukleat) dan sistem besar bisa mencakup kajian konformasi molekul dan perubahannya (mis. Proses denatrasi protein), perubahan fasa, serta peramalan sifat-sifat makroskopik (seperti kalor jenis) berdasarkan perilaku di tingkat atom.

 
Sumber:

Istilah Dalam Kimia Komputasi

Ab initio

Istilah “Ab initio” adalah bahasa latin untuk “dari awal”. Nama ini diberikan kepada perhitungan yang berasal langsung dari prinsip-prinsip teoritis, tanpa masuknya data eksperimen. Sebagian besar saat ini adalah mengacu ke perhitungan perkiraan kuantum mekanik. Perkiraan yang dibuat biasanya perkiraan matematika, seperti menggunakan bentuk fungsional sederhana untuk fungsi atau mendapatkan solusi perkiraan untuk sebuah persamaan diferensial.
Jenis yang paling umum perhitungan ab initio ini disebut perhitungan Hartree Fock (disingkat HF), di mana pendekatan utama disebut pendekatan lapangan pusat. Ini berarti bahwa tolakan Coulomb elektron-elektron tidak secara khusus diperhitungkan. Namun, itu efek bersih adalah termasuk dalam perhitungan. Ini adalah variasi perhitungan, yang berarti bahwa energi perkiraan dihitung semua sama atau lebih besar daripada energi yang tepat. Energi dihitung biasanya dalam satuan yang disebut Hartrees (1 H = 27,2114 eV). Karena pendekatan lapangan pusat, energi dari perhitungan HF selalu lebih besar daripada energi yang tepat dan cenderung ke nilai membatasi disebut batas Hartree Fock.
Pendekatan kedua dalam perhitungan HF adalah bahwa fungsi gelombang harus dijelaskan oleh beberapa bentuk fungsional, yang hanya diketahui secara tepat untuk satu beberapa sistem elektron. Fungsi yang paling sering digunakan adalah kombinasi linier dari orbital tipe Slater exp (-ax) atau jenis orbital Gaussian exp (-ax ^ 2), disingkat STO dan GTO. Fungsi gelombang terbentuk dari kombinasi linier dari orbital atom atau lebih sering dari kombinasi linear dari fungsi dasar. Karena pendekatan ini, perhitungan HF paling memberikan energi dihitung lebih besar dari batas Fock Hartree. Himpunan tepat fungsi dasar yang digunakan sering ditentukan oleh singkatan, seperti STO-3G atau 6-311 g + + **.
Sejumlah jenis perhitungan dimulai dengan perhitungan HF kemudian benar untuk tolakan elektron-elektron eksplisit, disebut sebagai korelasi. Beberapa metode ini Mohlar-Plesset teori perturbasi (MPN, dimana n adalah urutan koreksi), yang Generalized Valence Bond (GVB) metode, Multi-Konfigurasi Self Konsisten Lapangan (MCSCF), Interaksi konfigurasi (CI) dan teori Cluster Ditambah (CC). Sebagai kelompok, metode ini disebut sebagai perhitungan berkorelasi.
Sebuah metode, yang menghindari membuat kesalahan HF di tempat pertama disebut Quantum Monte Carlo (QMC). Ada beberapa rasa QMC .. variasional, difusi dan fungsi Green. Metode-metode ini bekerja dengan fungsi gelombang dan mengevaluasi secara eksplisit berkorelasi integral numerik menggunakan integrasi Monte Carlo. Perhitungan ini bisa sangat memakan waktu, tetapi mereka mungkin metode yang paling akurat dikenal saat ini.
Metode ab initio adalah alternatif teori kerapatan fungsional (DFT), di mana total energi dinyatakan dalam total kepadatan elektron, bukan fungsi gelombang. Dalam jenis ini perhitungan, ada Hamilton dan perkiraan ekspresi perkiraan untuk kepadatan total elektron.
Sisi baik metode ab initio adalah bahwa mereka akhirnya bertemu dengan solusi yang tepat, setelah semua perkiraan yang dibuat cukup kecil di besarnya. Namun, konvergensi ini tidak montonic. Kadang-kadang, perhitungan terkecil memberikan hasil yang terbaik untuk properti tertentu.
Sisi buruk dari metode ab initio adalah bahwa mereka mahal. Metode ini sering mengambil sejumlah besar waktu komputer cpu, memori dan ruang disk. Metode skala HF sebagai N 4, dimana N merupakan jumlah fungsi dasar, sehingga perhitungan dua kali lebih besar membutuhkan 16 kali lebih lama untuk menyelesaikan. perhitungan Korelasi sering skala jauh lebih buruk dari ini. Dalam prakteknya, solusi sangat akurat hanya dapat diperoleh ketika molekul berisi setengah lusin elektron atau kurang.
Secara umum, perhitungan ab initio kualitatif memberikan hasil yang sangat baik dan dapat memberikan hasil kuantitatif semakin akurat sebagai molekul yang dimaksud menjadi lebih kecil.

Semiempirical

Semiempirical perhitungan ditetapkan dengan struktur umum yang sama sebagai perhitungan HF. Dalam kerangka ini, potongan informasi tertentu, seperti dua integral elektron, yang didekati atau sama sekali dihilangkan. Dalam rangka untuk mengoreksi kesalahan diperkenalkan dengan menghilangkan bagian dari perhitungan, metode ini parameter, dengan melakukan suaian kurva dalam beberapa parameter atau nomor, untuk memberikan kesepakatan yang terbaik dengan data eksperimen.
Sisi baik dari perhitungan semiempirical adalah bahwa mereka jauh lebih cepat daripada perhitungan ab initio.
Sisi buruk dari perhitungan semiempirical adalah bahwa hasilnya bisa tidak menentu. Jika molekul yang sedang dihitung mirip dengan molekul dalam basis data yang digunakan untuk parameterisasi metode, maka hasilnya mungkin akan sangat baik. Jika molekul yang dihitung secara signifikan berbeda dari apa pun di set parameterisasi, jawaban mungkin sangat miskin.
perhitungan Semiempirical telah sangat sukses dalam deskripsi kimia organik, di mana hanya ada beberapa elemen digunakan secara luas dan molekul yang ukuran sedang. Namun, metode semiempirical telah dirancang khusus untuk deskripsi kimia anorganik juga.

Pemodelan solid state

Struktur elektronik dari kristal tak terbatas didefinisikan oleh struktur plot band, yang memberikan energi orbital elektron untuk setiap titik di k-ruang, yang disebut zona Brillouin. Sejak ab initio dan perhitungan semiempirical hasil energi orbital, mereka dapat diterapkan untuk band perhitungan struktur. Namun, jika memakan waktu untuk menghitung energi untuk molekul, itu bahkan lebih memakan waktu untuk menghitung energi untuk daftar poin di zona Brillouin.
perhitungan struktur Band telah dilakukan untuk sistem yang sangat rumit, namun perangkat lunak belum cukup otomatis atau cukup cepat sehingga siapa pun tidak struktur band santai. Jika Anda ingin melakukan perhitungan struktur band, Anda sebaiknya berharap untuk menempatkan banyak waktu dalam usaha Anda.

Mekanika molekul

Jika molekul terlalu besar untuk secara efektif menggunakan pengobatan semiempirical, masih mungkin untuk model perilaku itu dengan menghindari mekanika kuantum benar-benar. Metode disebut sebagai mekanika molekul membentuk ekspresi aljabar sederhana untuk energi total senyawa, tanpa keharusan untuk menghitung fungsi gelombang atau kepadatan total elektron. Ekspresi energi terdiri dari persamaan klasik sederhana, seperti persamaan osilator harmonik dalam rangka untuk menggambarkan energi yang berkaitan dengan ikatan peregangan, membungkuk, rotasi dan gaya antarmolekul, seperti interaksi van der Waals dan ikatan hidrogen. Semua konstanta dalam persamaan ini harus diperoleh dari data percobaan atau perhitungan ab initio.
Dalam metode mekanika molekul, basis data senyawa yang digunakan untuk parameterisasi metode (satu set parameter dan fungsi yang disebut medan gaya) sangat penting untuk keberhasilan itu. Dimana sebagai metode semiempirical mungkin parameter terhadap satu set molekul organik, sebuah metode mekanika molekul mungkin parameter terhadap kelas khusus molekul, seperti protein. Medan gaya seperti ini hanya akan diharapkan memiliki relevansi untuk menjelaskan protein lain.
Sisi baik dari mekanika molekuler adalah bahwa hal itu memungkinkan pemodelan molekul besar, seperti protein dan segmen dari DNA, sehingga alat utama ahli biokimia komputasi.
Sisi buruk dari mekanika molekul adalah bahwa ada banyak sifat-sifat kimia yang bahkan tidak didefinisikan dalam metode ini, seperti keadaan tereksitasi elektronik. Dalam rangka untuk bekerja dengan sistem yang sangat besar dan rumit, sering molekul mekanik paket perangkat lunak yang paling kuat dan paling mudah untuk menggunakan antarmuka grafis. Karena itu, mekanik kadang-kadang digunakan karena mudah, tetapi belum tentu cara yang baik untuk menjelaskan sistem.

Dinamika molekul

dinamika molekul terdiri dari memeriksa perilaku tergantung waktu dari molekul, seperti gerak getaran atau gerak Brown. Hal ini paling sering dilakukan dalam sebuah tulisan mekanik klasik mirip dengan perhitungan mekanika molekul.
Penerapan dinamika molekuler untuk pelarut / sistem terlarut memungkinkan perhitungan properti seperti koefisien difusi atau fungsi distribusi radial untuk digunakan dalam perawatan mekanik statistik. Biasanya skema perhitungan pelarut / zat terlarut adalah bahwa jumlah molekul (mungkin 1000) diberikan beberapa posisi awal dan kecepatan. posisi baru menghitung waktu kecil kemudian berdasarkan gerakan ini dan proses ini itterated untuk ribuan langkah untuk membawa sistem untuk keseimbangan dan memberikan gambaran statistik yang baik dari fungsi distribusi radial.
Dalam rangka untuk menganalisa getaran molekul tunggal, banyak dinamika langkah-langkah yang dilakukan, maka data tersebut Fourier berubah menjadi domain frekuensi. Sebuah puncak yang diberikan dapat dipilih dan diubah kembali ke domain waktu, untuk melihat apa gerakan pada frekuensi yang terlihat seperti.

Statistik Mekanika

Mekanika statistika adalah matematika berarti mengekstrapolasi sifat termodinamika bahan curah dari deskripsi molekul material. Banyak mekanika statistik masih pada tahap kertas dan pensil teori, karena mekanika kuantum tidak dapat menyelesaikan persamaan Schrödinger tepat lagi, mekanika statistik tidak benar-benar memiliki bahkan titik awal yang baik untuk perlakuan yang benar-benar ketat. Mekanika statistika perhitungan sering ditempelkan ke akhir perhitungan inito ab untuk properti fasa gas. Untuk properti fasa terkondensasi, sering molekul dinamika perhitungan diperlukan dalam rangka untuk melakukan percobaan komputasi.

Termodinamika

Termodinamika adalah salah satu deskripsi paling baik dikembangkan kimia matematika. Sangat sering setiap pengobatan termodinamika yang tersisa untuk pena dan kertas kerja sepele karena banyak aspek kimia begitu akurat digambarkan dengan ekspresi matematika yang sangat sederhana.

Struktur-Properti Hubungan

Struktur-properti hubungan yang kualitatif atau kuantitatif didefinisikan secara empiris hubungan antara struktur molekul dan sifat diamati. Dalam beberapa kasus ini mungkin tampak duplikat hasil mekanik statistik, namun sistem struktur-properti hubungan tidak perlu didasarkan pada prinsip-prinsip teoritis ketat.
Kasus yang paling sederhana hubungan struktur-properti aturan jempol kualitatif. Misalnya, kimia polimer yang berpengalaman mungkin dapat memprediksi apakah polimer akan halus atau rapuh berdasarkan geometri dan ikatan monomer.
Ketika struktur-properti hubungan yang disebutkan dalam literatur saat ini, biasanya menyiratkan hubungan matematis kuantitatif. Hubungan ini paling sering diperoleh dengan menggunakan software curve fitting untuk menemukan kombinasi linear dari sifat molekul, yang paling mereproduksi properti yang diinginkan. Sifat-sifat molekul biasanya diperoleh dari perhitungan pemodelan molekul. deskriptor molekul lain seperti berat molekul atau deskripsi topologi juga digunakan.
Ketika properti yang dijelaskan adalah properti fisik, seperti titik didih, ini disebut sebagai Kuantitatif Struktur-Properti Relationship (QSPR). Ketika properti yang dijelaskan adalah jenis aktivitas biologis (seperti aktivitas obat), ini disebut sebagai Kuantitatif Struktur-Aktivitas Relationship (HKSA).

Perhitungan Simbolik

perhitungan simbolik dilakukan bila sistem yang terlalu besar untuk sebuah deskripsi atom-by-atom masih layak pada setiap tingkat pendekatan. Sebuah contoh mungkin gambaran membran dengan menjelaskan lipid individu sebagai perwakilan beberapa poligon dengan beberapa ekspresi untuk energi interaksi. Pengobatan semacam ini digunakan untuk biokimia komputasi dan bahkan mikrobiologi.

Kecerdasan Buatan

Teknik diciptakan oleh ilmuwan komputer tertarik dalam kecerdasan buatan telah diterapkan sebagian besar berupa rancangan obat dalam beberapa tahun terakhir. Metode ini juga pergi dengan nama De Novo atau desain obat rasional. Skenario umum adalah bahwa beberapa situs fungsional telah diidentifikasi dan diinginkan untuk datang dengan struktur molekul yang akan berinteraksi dengan situs bahwa untuk menghalangi fungsi itu. Daripada memiliki seorang ahli kimia mencoba ratusan atau ribuan kemungkinan dengan program mekanika molekul, mekanika molekul dibangun ke dalam program kecerdasan buatan, yang mencoba jumlah besar “masuk akal” kemungkinan dalam fasion otomatis. Jumlah teknik untuk menggambarkan “cerdas” bagian dari operasi ini begitu beragam yang tidak mungkin untuk membuat generalisasi tentang bagaimana hal ini diimplementasikan dalam program.

Bagaimana melakukan proyek riset komputasi

Bila menggunakan kimia komputasi untuk menjawab pertanyaan kimia, masalah jelas adalah bahwa Anda perlu tahu bagaimana menggunakan perangkat lunak. Permasalahan yang terjawab adalah bahwa Anda perlu untuk mengetahui seberapa baik jawabannya akan menjadi. Berikut adalah daftar periksa untuk diikuti.
Apa yang Anda ingin tahu? Seberapa akurat? Mengapa? Jika Anda tidak dapat menjawab pertanyaan-pertanyaan, maka Anda bahkan tidak memiliki proyek penelitian belum.
Seberapa akurat Anda memprediksi jawabannya akan? Dalam kimia analitik, Anda melakukan sejumlah pengukuran identik kemudian bekerja keluar kesalahan dari deviasi standar. Dengan percobaan komputasi, melakukan hal yang sama harus selalu memberikan hasil yang sama persis. Cara yang Anda memperkirakan kesalahan Anda adalah untuk membandingkan sejumlah perhitungan mirip dengan jawaban eksperimental. Ada artikel dan kompilasi dari studi ini. Jika tidak ada, Anda akan perlu menebak metode mana yang harus masuk akal, didasarkan pada asumsi itu kemudian melakukan penelitian sendiri, sebelum Anda dapat menerapkannya pada Anda tidak diketahui dan punya ide seberapa bagus perhitungannya. Ketika seseorang hanya memberitahu Anda dari atas kepala mereka metode apa yang digunakan, mereka juga memiliki jumlah wajar dari jenis informasi hafal, atau mereka tidak tahu apa yang mereka bicarakan. Waspadalah terhadap seseorang yang memberitahu Anda sebuah program yang diberikan adalah baik hanya karena itu adalah satu-satunya mereka tahu bagaimana menggunakan, bukan mendasarkan jawaban mereka pada kualitas hasil.
Berapa lama Anda berharap untuk mengambil? Jika dunia yang sempurna, Anda akan memberitahu PC Anda (suara masukan tentu saja) untuk memberikan solusi yang tepat untuk persamaan Schrödinger dan melanjutkan hidup Anda. Namun, sering kali perhitungan ab initio akan memakan sehingga waktu yang dibutuhkan waktu satu dekade untuk melakukan perhitungan tunggal, jika Anda bahkan memiliki mesin dengan cukup memori dan ruang disk. Namun, sejumlah metode yang ada karena setiap yang terbaik untuk situasi tertentu. Caranya adalah dengan menentukan mana yang terbaik untuk proyek Anda. Sekali lagi, jawabannya adalah untuk melihat ke dalam literatur dan melihat berapa lama masing-masing diperlukan. Jika satu-satunya yang Anda tahu adalah bagaimana skala perhitungan, melakukan perhitungan sederhana yang mungkin kemudian gunakan persamaan skala untuk memperkirakan berapa lama waktu yang diperlukan untuk melakukan semacam perhitungan bahwa Anda telah diprediksi akan memberikan akurasi yang diinginkan.
Apa perkiraan sedang dilakukan? Yang signifikan? Ini adalah bagaimana Anda menghindari tampak seperti orang bodoh yang lengkap, ketika anda berhasil melakukan perhitungan yang sampah lengkap. Sebuah contoh akan mencoba untuk mencari tahu tentang gerak getaran yang sangat anharmonic, ketika perhitungan menggunakan pendekatan osilator harmonik.
Setelah Anda akhirnya menjawab semua pertanyaan ini, Anda siap untuk benar-benar melakukan perhitungan. Sekarang Anda harus menentukan software apa yang tersedia, berapa biayanya dan bagaimana menggunakannya. Perhatikan bahwa dua program dari jenis yang sama (ab initio yaitu) dapat menghitung sifat-sifat yang berbeda, sehingga Anda harus memastikan program ini tidak persis apa yang Anda inginkan.
Ketika Anda sedang belajar bagaimana menggunakan sebuah program, Anda dapat mencoba untuk melakukan puluhan perhitungan yang akan gagal karena Anda dibangun masukan salah. Jangan gunakan molekul proyek Anda untuk melakukan hal ini. Membuat semua kesalahan Anda dengan sesuatu yang sangat mudah, seperti molekul air. Dengan begitu Anda tidak membuang sejumlah besar waktu.

Visualisasi

visualisasi data adalah proses menampilkan informasi dalam jenis representasi piktorial atau grafis. Sejumlah program komputer yang sekarang tersedia untuk menerapkan skema pewarnaan data atau bekerja dengan tiga dimensi representasi.

Informasi lebih lanjut

Untuk gambaran tingkat pengantar kimia komputasi lihat
GH Grant, WG Richards “Komputasi Kimia” Oxford (1995)
Penjelasan lebih rinci tentang teknik kimia komputasi umum yang terkandung dalam
AR Leach “Prinsip Pemodelan Molekul dan Aplikasi” Addison Wesley Longman (1996)
F. Jensen “Pengantar Komputasi Kimia” John Wiley & Sons (1999)
Ada banyak buku pada prinsip-prinsip mekanika kuantum dan setiap teks kimia fisik memiliki pengobatan pengantar. Pekerjaan yang saya listing di sini adalah volume dua set dengan masing-masing bab dipecah menjadi bagian dasar dan lanjutan sehingga sangat baik untuk pengguna menengah dan lanjutan.
C. Cohen-Tannoudji, B. Diu, F. Laloe “Quantum Mechanics Volume I & II” Wiley-InterScience (1977)
Untuk suatu pendahuluan kimia kuantum melihat
DA McQuarrie “Quantum Kimia” Buku Science University (1983)
Sebuah tingkat pascasarjana teks pada kimia kuantum
DI Levine “Kimia kuantum” Prentice Hall (1991)
Seorang sarjana lulusan maju atau teks pada kimia kuantum
PW Atkins, RS Friedman “Mekanika Quantum Molecular” Oxford (1997)
Untuk metode Monte Carlo kuantum, urutan buku berikut ini dengan menggunakan ISBN 981-02-0322-5 karena judul terdaftar salah ‘Buku di Print di.
BL Hammond, WA Lester, Jr, Reynolds PJ “Monte Carlo Metode dalam Ab initio Quantum Chemistry” Dunia Ilmiah (1994)
Sebuah artikel review yang baik tentang teori kerapatan fungsional
T. Ziegler Chem. Wahyu 91, 651-667 (1991)
Untuk teori kerapatan fungsional lihat
RG Parr, W. Yang “Fungsi Kepadatan Teori Atom dan Molekul” Oxford (1989)
Untuk pemahaman dasar pemodelan solid state lihat
R. Hoffmann “Solids dan Permukaan: Chemist Lihat A Bonding di Struktur Extended”, VCH (1988)
Untuk penjelasan tingkat lulusan mekanika statistik lihat
DA McQuarrie “Mekanika statistik” Harper Collins (1976)
Teks kimia fisik akan mendapatkan sebuah gambaran termodinamika tapi saya akan merekomendasikan
DI Levine “Kimia Fisik” McGraw Hill (1995)
Lain pengenalan bagus untuk kimia komputasi
S. Profeta, Jr “Kirk-Othmer Ensiklopedia Tambahan Teknologi Kimia”, 315 John Wiley & Sons (1998).
Ada daftar komprehensif dari semua modeling software yang tersedia molekul dan menggunakan data struktural, bebas atau tidak, dalam lampiran 2 dari
“Tinjauan dalam Volume Kimia Komputasi 6″ Ed. KB Lipkowitz dan Boyd DB, VCH (1995)
Ada menulis pada desain komputer dibantu obat di
gopher: / / www.ccl.net/00/documents/drug.design.guide
Matematika tantangan dari kimia teori / komputasi
http://www.nap.edu/readingroom/books/mctcc/index.html
Sebuah teks online di pemodelan molekul menggunakan mekanika molekul
http://www.netsci.org/Science/Compchem/feature01.html
Sebuah teks online pada kimia komputasi
http://www.cryst.bbk.ac.uk/ ~ ubcg8ab/course/os_molf.html
Pengantar online untuk mekanika kuantum di
http://cmcind.far.ruu.nl/webcmc/qm/home.html
Kutipan: Artikel ini awalnya diumumkan di web. Hal ini sekarang muncul di cetak di D. Young, Chem. Aust. 11, 5 (1998).
Versi yang diperluas dari artikel ini akan diterbitkan di “Komputasi Kimia: Panduan Praktis untuk Menerapkan Teknik ke Real Masalah Dunia” oleh David Young, yang akan tersedia dari John Wiley & Sons pada musim semi 2001.

Sumber:
http://kasmui.blog.com/archives/981/

Manfaat Beberapa Software KimKom

[Chempup] JMol


     Jmol adalah software visualisasi struktur molekul dalam tiga dimensi yang ditulis dengan program Java. Fitur yang dimiliki software ini adalah membaca berbagai jenis file input dan output dari program-program kimia kuantum seperti VASP, serta animasi file multi-frame dan modus normal yang dihitung dari program kuantum.


     Jmol ini gartis, merupakan penampil strukutur molekul tiga dimensi (molecule viewer) yang dapat digukan secara bebas oleh siapapun yang menekuni bidang kimia dan biokimia. Aplikasi ini merupakan cross-platform, berjalan di sistem operasi Windows, Mac OS X, dan Linux / Unix. Fitur yang dimilikinya di antaranya membaca berbagai jenis file dan output dari program kimia kuantum, dan animasi file multi-frame. JmolApplet adalah applet web browser yang dapat diintegrasikan ke dalam halaman situs. Aplikasi Jmol adalah aplikasi Java standalone yang berjalan di desktop. JmolViewer merupakan seperangkat alat yang dapat diintegrasikan ke dalam aplikasi Java lainnya.


[Chempup] Chemtool


ChemTool sesungguhnya hanyalah sebuah file spreadsheet yang dirancang untuk penkonversian massa zat ke mol dan sebaliknya. Chemtool ini merupakan salah satu applet yang ada dalam Chempup seperti yang saya tulis di ChemPup, Applet Kimia pada Puppy Linux. Sangat sederhana namun cukup inspiratif. Ini tentu masih dapat dikembangkan lebih lanjut untuk pembuatan kalkulator khusus hanya dengan menggunakan spreadsheet. Saya sudah coba mengalihbahasakan ChemTool ini.
Berikutnya adalah hasil terjemahan dengan tidak mengubah rumus yang ada di dalam-nya.
 
HyperChem 
 
Fungsi hyperchem adalah :

1.      Membuat sketsa dwimatra (2D) molekul dari atom-atom penyusunnya, lalu mengubahnya menjadi model trimatra (3D) dengan HyperChem Model Builder.
2.      Memilih residu-residu standar secara berurutan dari perpustakaan asam amino dan nukleotida HyperChem/Lite untuk membangun protein dan asam nukleat.
3.      Membaca tipe atom dan koordinat molekular yang telah disimpan sebagai arsip HIN (masukan HyperChem yang dibuat sebelumnya) atau arsip ENT (mengambil dari sumber lain, yaitu Brookhaven Protein Data Bank/PDB)
4.      Menata kembali molekul, misalnya dengan memutar atau menggesernya.
5.      Mengubah kondisi tampilan, termasuk penampakan ruang, model molekul, dan label struktural.
6.      Merancang dan melakukan perhitungan kimiawi, termasuk dinamika molekular.
Tersedia berbagai metode mekanika molekular maupun mekanika kuantum (semiempiris atau ab initio). Perhitungan mekanika molekular menggunakan medan gaya MM+, AM-BER, BIO+, atau OPLS, sedangkan mekanika kuantum semiempiris meliputi extended Hückel, CNDO, INDO, MINDO3, MNDO, AM1, PM3, ZINDO/I, dan ZINDO/S.
7.      Penetapan efek isotop dalam perhitungan analisis vibrasional untuk metode-metode SCF ab initio dan semiempiris.
8.      Membuat grafik Excel dari hasil perhitungan kimiawi.
9.      Mensolvasikan molekul dalam kotak periodik.
 
Molden
Molden hampir sama dengan Jmol, fungsinya adalah untuk menampilkan dalam bentuk 3D. Molden sangat powerful terutama dengan z-matrik editornya. Saat ini molden didistribusikan untuk keperluan akademik. Molden dapat digunakan untuk memvisualisasi hasil perhitungan dari GAUSSIAN. Molden dapat di download di ftp://ftp.cmbi.ru.nl/pub/molgraph/molden/molden5.0.tar.gz. Untuk meng-compile molden ada beberapa paket program yang harus diinstall terlebih dahulu. Bagi para pengguna setia Debian dan turunannya seperti Ubuntu dapat menggunakan perintah apt-get install untuk menginstall program-program berikut ini : gfortran libX11-6 libX11-dev libgl1-mesa-glx libgl1-mesa-dev build-essential mesa-common-dev libglu1-mesa-dev libxmu-dev makedpend xutils-dev wget. Selanjutnya tinggal mengekstrak folder molden lalu edit makefile, samakan dengan platform komputer yang kita gunakan. Terakhir compile dengan perintah make. Jika proses ini berhasil akan ada file ekskusi molden, gmolden, ambfor dan surf.

Avogadro

Avogadro adalah editor molekul maju dan visualisator dirancang untuk cross-platform digunakan dalam kimia komputasipemodelan molekulbioinformatika,ilmu materialdan bidang terkaitMenawarkan kualitas render fleksibel tinggi dan arsitektur plugin yang kuat.

Cross-Platform: Molekuler pembangun / editor untuk Windows, Linuxdan Mac OS X.
GratisOpen SourceMudah untuk menginstal dan semua kode sumber tersedia di bawah GNU GPL.
Internasional: Terjemahan ke orang lain Cina, PerancisJerman, ItaliaRusia,Spanyol, dandengan bahasa yang lebih untuk datang.
IntuitifDibangun untuk bekerja dengan mudah untuk mahasiswa dan penelitimaju baik.
Cepat: Mendukung multi-threaded rendering dan komputasi.
ExtensiblePlugin arsitektur untuk pengembang, termasuk rendering, alatinteraktifperintahdan skrip Python.
FleksibelFitur termasuk impor Babel Buka file kimia, generasi masukan untuk beberapa paket kimia komputasikristalografidan biomolekul.
 
Sumber :
 http://www.blogtopsites.com/outpost/32afa68bb97b7f15de355034f5b27934

Link berkaitan dengan Software KimKom

01. Wikipedia02. Virtual Comput. Chemistry
03. Computational Chemistry List04. SPU
05. Periodic Table of Element06. ChemiCool (SPU)
07. Online Chemistry Calculator08. Creative Chemistry Calculator
09. www.chemie.fu-berlin.de10. Konstanta Fisik
11. www.physlink.com12. Newton.ex.ac.uk
13. www.educypedia.be14. britneyspears.ac/physics
15. Convert Molecular Format16. Chemical Tools
17. Basis Set Form18. RPM Source
19. Download Kimia20. Software Kimia
21. Software Kimia22. Powerpoint Chemistry
23. Software Modelling24. Download Avogadro
25. Download Arguslab26. Download ChemAxon
27. Download ChemSketch28. Download Software
29. Search Structure30. Download Software
31. Chemistry Resources32. Middle School Science
33. Aplikasi Chemistry for linux
35. Freewar e Chemistry 
37. Sofware Quantum Mechanics
39. Youtube Komputasi

41. IUPAC Transactions
43. Teori Orbital Molekul
45. Internet Chemistry
47. Comchem for Educator
49. Commercial Software
51. Editor Molekul
53. VSEPR
55. MM with HyperChem
57. ACS Publication
59. MM with Gaussian
61. Instruksi GaussView
63. Molecular Model for Organic
65. Konversi Z-Matrik to Cartesian
67. Energy Units Converter
69. Draw and Search
71. Software Kristalografi
73. MathMol Home Page
75. MM Software
77. Molecular Docking
79. Facio

Sumber : 
http://kasmui.blog.com/komputasi/
34. Chemmaster Blog
36. Gaussian + GaussView
38. Dalton Transactions
40. Science Direct

42. Springerlink
44. Computational Science
46. Overview Comput Chemistry
48. Molecule Index
50. Free Software
52. Animasi Molecular Mechanics
54. Persamaan Schrodinger
56. J. of Inorganic Chemistry
58. J. Chem Theory and Computation
60. Instruksi Chem3D
62. Mol. Modelling for Organic
64. Teknik Modelling MM
66. Konversi Z Matrik ke Cartesian
68. Multiple Linier Regression
70. Crystal Software
72. Open Directory
74. Modelling MathMol
76. 3D JMol
78. Nanotech JMol
80. Computational Chemistry Laboratory